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Generalized Taylor dispersion theory is extended so as to enable the analysis of the 
transport in unbounded homogeneous shear flows of Brownian particles possessing 
internal degrees of freedom (e.g. rigid non-spherical particles possessing orientational 
degrees of freedom, flexible particles possessing conformational degrees of freedom, 
etc.). Taylor dispersion phenomena originate from the coupling between the 
dependence of the translational velocity of such particles in physical space upon the 
internal variables and the stochastic sampling of the internal space resulting from the 
internal diffusion process. 

Employing a codeformational reference frame (i.e. one deforming with the sheared 
fluid) and assuming that the eigenvalues of the (constant) velocity gradient are 
purely imaginary, we establish the existence of a coarse-grained, purely physical- 
space description of the more detailed physical-internal space (microscale) transport 
process. This macroscale description takes the form of a convective-diffusive 'model ' 
problem occurring exclusively in physical space, one whose formulation and solution 
are independent of the internal (' local '-space) degrees of freedom. 

An Einstein-type diffusion relation is obtained for the long-time limit of the 
temporal rate of change of the mean-square particle displacement in physical space. 
Despite the nonlinear (in time) asymptotic behaviour of this displacement, its 
Oldroyd time derivative (which is the appropriate one in the codeformational view 
adopted) tends to a constant, time-independent limit which is independent of the 
initial internal coordinates of the Brownian particle at  zero time. 

The dyadic dispersion-like coefficient representing this asymptotic limit is, in 
general, not a positive-definite quantity. This apparently paradoxical behaviour 
arises due to the failure of the growth in particle spread to be monotonic with time 
as a consequence of the coupling between the Taylor dispersion mechanism and the 
shear field. As such, a redefinition of the solute's dispersivity dyadic (appearing as a 
phenomenological coefficient in the coarse-grained model constitutive equation) is 
proposed. This definition provides additional insight into its physical (Lagrangian) 
significance as well as rendering this dyadic coefficient positive-definite, thus 
ensuring that solutions of the convective-diffusive model problem are well behaved. 
No restrictions are imposed upon the magnitude of the rotary €'&let number, which 
represents the relative intensities of the respective shear and diffusive effects upon 
which the solute dispersivity and mean particle sedimentation velocity both depend. 

The results of the general theory are illustrated by the (relatively) elementary 
problem of the sedimentation in a homogeneous unbounded shear field of a size- 
fluctuating porous Brownian sphere (which body serves to model the behaviour of a 
macromolecular coil). It is demonstrated that the well-known case of the 
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translational diffusion in a homogeneous shear flow of a rigid, non- fluctuating sphere 
(for which the Taylor mechanism is absent) is a particular case thereof. 

1. Introduction 
Consider the temporal evolution of a dilute ‘cloud ’ of colloidal, monodisperse, 

internally homogeneous, non-neutrally buoyant, triaxial ellipsoidal particles sedi- 
menting in an unbounded spatially homogeneous shear flow. In  addition to being 
passively convected by the shear field, the particles exhibit translational ‘slip ’ 
relative to the suspending fluid owing to the action of external forces (typically 
gravity), as well as undergoing both translational and rotational diffusion. 

Rather than studying the entire multiparticle system comprising the cloud, it 
suffices in the dilute limit to focus on but a single ‘tracer’ particle. The state of this 
particle in space is completely specified by R = (x, y, z ) ,  the instantaneous position 
vector in three-dimensional physical space of its ‘ locator point ’ (any fixed material 
point of the particle ; e.g. its centre) relative to an arbitrary space-fixed origin 0, and 
by its instantaneous orientation represented by the triplet ( O , $ ,  $) = 9, say, 
corresponding to an appropriate set of Eulerian anglcs relating a triad of particle- 
fixed Cartesian axes to a comparable triad of space-fixed Cartesian axes (Goldstein 
1950). 

Owing to the stochastic (i.e. Brownian or turbulent) elements affecting its motion, 
the trajectory of the ellipsoidal particle can be given only a statistical rather than 
deterministic description. This is expressed in terms of the conditional probability 
density P ( R ,  4, t I R’, 9‘) of finding the particle a t  the six-dimensional phase-space 
point ( R ,  4) = (x, y, z ;  0, $, $) a t  time t > 0, givcn that it was initially introduced into 
the fluid a t  t = 0 at (R‘, 9‘). This probability satisfies the continuity equation 

ap 
at 
-+VR-J+V, . j  = 0, 

together with appropriate constitutive equations (Brenner & Condiff 1974) for the 
respective translational and rotational flux density vectors appearing therein : 

J = [ V( R’) + ( R  - R’) * G +I;. M(+)] P - D(#) * V R  Y 

and j = [ w ~ - B ( # ) : S ] P - ~ ( # ) - V + P .  (1.3) 

(1.2) 

In the above, VR=i3/aR and V+= a/a# (with 84 the infinitesimal rotation 
pseudovector (Goldstein 1950 ; Landau & Lifshitz 1960)) are, respectively, the 
physical- and orientation-space (cf. Brenner & Condiff 1972) gradient operators. In  
addition, M, D ,  d and B are intrinsic, material particle tensors (which are constant 
in a frame rotating with the particle). The translational mobility dyadic M and 
pseudotriadic B were respectively calculated for an ellipsoid by Overbeek (1876) and 
Jeffery (1922). The corresponding ellipsoidal translation and rotary diffusion dyadics, 
D and d, are also available (Perrin 1934, 1936; the rotational mobility from which 
d is obtained was calculated by Edwardes 1892), having been obtained by 
application of the appropriate Stokes-Einstein relations (Gans 1928 ; cf. also Brenner 
1967). Thus, from the point of view of a space-fixed observer, each of these material 
tensors is a known function of the instantaneous particle orientation #, as suggested 
by the argument affixed to them in the constitutive equations (1.2)-(1.3). The vector 
F is the external force acting on the ellipsoid. It is assumed independent of R (but 
may, more gcncrally, be a specified function of 0). The vector V(R’) + ( R -  R’) - G 
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represents the undisturbed fluid velocity at  R in terms of its value V(R’) at  R’ and 
the constant (position- and time-independent) undisturbed velocity gradient dyadic 
G. The pseudovector of is the angular velocity of the undisturbed fluid (appropriately 
related to the antisymmetric portion of G )  and S is the rate-of-strain dyadic, 
representing the symmetric portion of G. The specified, homogeneous shear flow 
parameters wp, S and G appearing in the constitutive equations (1.2)-(1.3) are, of 
course, constant tensors only in the space-fixed reference frame. This contrasts with 
the material tensors appearing in these constitutive equations, which are constant 
only in the particle-fixed reference frame, but appear as functions of orientation # 
when expressed in the space-fixed frame. 

To (1.1)-( 1.3) we adjoin the boundary conditions 

(R-R’I”(P,J,j)=(O,O,O) as IR-R’I-tco ( m = 0 , 1 , 2  ,... ), (1.4) 

thus assuring that P decays exponentially rapidly at infinity (ultimately assuring 
convergence of all physical-space moments of P ) .  Furthermore, we require that P be 
continuous and single-valued in 4, in addition to satisfying the initial condition 

6(R-R’)6(#-#’) for t = 0 ( 1 . 5 ~ )  

0 for t < 0, (1 .5b )  

with 6 the Dirac delta function. The appearance of the unit coefficient implicitly 
multiplying the right-hand side of ( 1 . 5 4  automatically assures that the probability 

P={ 

of the ellipsoid possessing some position and some orientation in space is unity for all 
times t > 0 following its introduction into the system. Here, the integration domains, 

R, ={-a < x < CO, -CO < y  < CO, --OO < z <  CO} 

#o = (0 < 6 < x, 0 < q5 < 2x, 0 < z) < 2n}, 

(1.6) 

and (1.7) 

respectively, constitute all of the physical and orientation subspaces, whereas dR = 
dx dy dz and d# = sin 0 d0 dq5 d$ denote ‘ volume ’ elements therein. 

The foregoing problem uniquely determines the conditional probability density 
P( > 0) in the six-dimensional phase space (R ,  4). Its solution is, however, daunting. 
(Indeed, the detailed formulation (1.1)-( 1.5) of this six-dimensional, unsteady-state, 
initial- and boundary-value problem would have appeared even more forbidding had 
the various orientation-space operations and phenomenological coefficients, together 
with contractions between tensors expressed relative to particle-fixed and space- 
fixed reference frames (e.g. B and S, respectively) appearing in (1.2)-( 1.3), been 
expressed explicitly in terms of Eulerian angles.) 

Existing literature addresses (and solves) specialized forms of the above problem. 
Thus, the diffusion of spherical Brownian particles in general homogeneous shear 
flows has been extensively studied (Elrick 1962; Frankel & Acrivos 1968; San Miguel 
& Sancho 1979; Foister & van de Ven 1980; Dufty 1984; Hess & Rainwater 1984, to 
cite just a few contributions); so too has the sedimentation of non-spherical 
Brownian particles in quiescent, non-sheared fluids been studied (Gallily & Cohen 
1976; Goren 1979; Brenner 1979, 1981; Dill & Brenner 1983; Frankel 1991, etc.). 
Cerda & van de Ven (1983) examined the translational motion of a neutrally buoyant 
Brownian spheroid in simple shear flow. Assuming large rotary PBclet numbers, they 
decoupled their translational and rotary motions (in a manner which does not appear 
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to  us to  be entirely consistent). In  any event, no rigorous treatment of the full 
dispersion problem posed above is known to us, and only the full problem manifests 
Taylor dispersion phenomena. 

Rather than seeking the exhaustively detailed, unsteady state, six-dimensional 
(purely numerical) solution P(R, d ,  t I R’, 4’) of the problem posed, and even then only 
for the one particular choice of initial orientation #’, physical interest in the temporal 
behaviour of the ellipsoid often focuses only on an asymptotic description of its 
motion provided by the long-time limit of the orientation-averaged density, namely 

which represents the conditional probability for finding the particle at the physical- 
space position R a t  time t irrespective of the particle’s instantaneous orientation 
a t  that time. In  particular, we seek to formulate the appropriate initial- and 
boundary-value problem governing (the leading-order asymptotic behaviour of)  
P(R,  t I R’, 4’) - P(R, t I R’) in the long-time limit, which intuition suggests should 
represent the solution of the following physical-space, convective-diffusive- 
sedimentation, initial- and boundary-value problem (cf. (1.1)-( 1.5)) : 

aP --+v,.J= 0, 
at 

(1.9a) 

def. 

J = [ V(R’)  + ( R  - R’) * G + i f * ] P - 6 * . V R P ,  (1 .9b)  

IR-R’Jm(P,q+(O,O) as IR-R’I+oo ( m =  0,1 ,2  ,...) (1.9c) 

6(R-R’)  for t = O  

0 for t < 0, 
and P = {  (1.9d) 

with o* the mean sedimentation velocity vector of the ellipsoid (relative to the fluid) 
and D* its dispersivity dyadic, each constant relative to space-fixed axes, and 
supposed to be determined entirely by the specified orientation-specific phenom- 
enological data (F, M, D,  B together with , .  the prescribed velocity gradient G, and, 
hence, of and S )  appearing in the six-dimensional microscale transport problem 
posed by (1.1)-(  1.5). The phenomenological coefficients if* and 6* appearing in the 
‘model problem ’ (1.9) provide a macroscale description (free of any explicit 
dependence upon the ellipsoid’s orientational degrees of freedom) of the overall 
transport process in physical space. 

The possibility of constructing such a purely physical-space description is based 
upon recognizing inherent diferences existing between the respective translational 
and rotational degrees of freedom of the particle or, more precisely, the disparity 
existing in timescales for relaxation of the respective transport processes in the 
physical and orientational subspaces. The rotary motion (cf. (1.3)) depends only 
upon the velocity gradient, which in a homogeneous shear field is, by definition, 
constant throughout physical space. Consequently, the ellipsoid’s rotary motion is 
entirely independent of its instantaneous physical-space position. This independence, 
in conjunction with the existence of rotary diffusion, enables the particle to attain a 
stationary orientational equilibrium (after it has sampled all orientations (1.7) 
sufficiently many times), which state is independent of the ellipsoid’s initial 
orientation #’. Obviously, no comparable equilibrium can be achieved in the 
physical-space domain (1.6) owing to its unboundedness. 
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Despite the foregoing qualitative argument, it is not a priori obvious that the 
macrotransport description embodied in (1.9) (or indeed any purely physical-space 
description of the mean transport) is possible for unbounded shear flows, and - if it 
is - then how is one to calculate the macroscale phenomenological coefficients O* and 
D* appearing therein from the given microscale orientation-specific phenom- 
enological data and prescribed shear parameters appearing in equations (1.2)-( 1.3). 

Such issues have been previously addressed by generalized Taylor dispersion 
theory? in a variety of physical contexts. In fact, the formulation (1.1)-(1.5) 
conforms to the structure of the generic microscale transport problem underlying the 
latter theory (cf. Frankel & Brenner 1989, their (2.1)-(2.6)) when one identifies the 
following equivalence relations : 

R + Q  and ++q,  (1.10) 

i.e. the three-dimensional physical-space position vector corresponds to the ‘global ’ 
coordinate Q and the triplet of Eulerian angles to the ‘local’ coordinate q. 

The questions posed above cannot, however, be resolved by existing generalized 
Taylor dispersion theory since a fundamental feature of the paradigm underlying 
that theory is the basic hypothesis that all the phenomenological coefficients 
appearing in the exact microscale formulation of the problem governing the 
conditional probability density P(Q, q, t 1 Q’, q’) are independent of the global 
coordinate Q ~ being at  most (prescribed) functions of the local coordinate q (and, 
perhaps, periodic functions of the time too; cf. Shapiro & Brenner 1990). This 
requirement is obviously not satisfied in the present problem (owing to the 
occurrence of the shear term in (1.2)). 

As will appear, application of the Taylor dispersion multiple-timescale scheme to 
the above example, as well as to other Taylor dispersion problems in unbounded shear 
flows, necessitates a major extension of the original theory (cf. Frankel & Brenner 
1989), requiring reconsideration of some of its basic tenets. This extension constitutes 
the goal of the present contribution. (The lengthy explicit numerical results for the 
problem of the transport of Brownian ellipsoidal particles in homogeneous shear, 
which furnished the motivation for this extension, will be reported separately in a 
forthcoming contribution.) 

In the following derivation we found it preferable to use standard, albeit abstract, 
general Taylor dispersion theory notation, not only because of its conciseness, but 
also as a means of emphasizing that the subsequent theory developed has implications 
and applications well beyond the specific ellipsoid example discussed thus far. This 
fact will be illustrated by applying the general theory to be developed to the 
(relatively) elementary problem of transport in a shear flow of a sedimenting, size- 
fluctuating porous sphere (which geometry is a commonly accepted model for a 
macromolecular polymer coil ; Wiegel 1980). 

A brief review of the subsequent developments now follows. In $2 we formulate the 
generic microscale problem of generalized Taylor dispersion in unbounded homo- 
geneous shear flows. This is followed by a transformation to a codeformational frame 
of reference (Bird, Armstrong & Hassager 1987), which transformation restores the 
structure of the ‘classical’ non-sheared problem (cf. Frankel & Brenner 1989). 
Section 3 makes use of the method of statistical moments to obtain an asymptotic 

t Schemes other than Taylor dispersion moment methods that hove also been used to effect the 
requisite coarse graining of microscale equations are homogenization (Bensoussan, Lions & 
Papanicolau 1978) and invariant manifold schemes (cf. Muncaster 1983). 



152 I .  Frankel and H .  Rrenner 

expansion of the local-space-averaged conditional probability density for cir- 
cumstances wherein the eigenvalues of the velocity gradient G are either zero or 
purely imaginary. Explicit forms of this expansion are then obtained for the 
corresponding subclass of plane two-dimensional homogeneous shear flows. Results 
of the preceding sections are utilized in $4 to substantiate the existence of a ‘purely 
global ’ macroscale description based upon a convective-diffusive model problem. 
Further insight into the physical significance of the dispersivity dyadic is gained in 
$ 5  by having recourse to a Lagrangian description in the original domain. Section 6 
addresses cases of zero ‘slip velocity ’, for which circumstances the Taylor dispersion 
mechanism is absent (e.g. a rigid Brownian sphere in an unbounded homogeneous 
shear flow), as particular cases of the general theory developed here. Some of the 
results of the general theory are illustrated in $ 7  by considering the dispersion 
accompanying the sedimentation in a shear ficld of a size-fluctuating porous 
Brownian sphere. Finally, $8 summarizes the main results of the present analysis and 
outlines some desirable future applications and theoretical extensions thereof. 

2. Formulation of the problem 
Following standard (Frankel & Brenner 1989) notation, the conditional probability 

density P(Q,  q ,  t I Q’, 4’) governing the solute tracer transport process satisfies the 
conservation equation (cf. (1 .1)  for the case of an ellipsoid) 

aP 
-+VQ-J+V, . j  at = 0, 

in which the constitutive equations for tjhe respectjive global- and local-space flux 
density vectors appearing therein are (cf. (1.2) and (1.3) for the case of an ellipsoid) 

J =  [U(q)+ V(Q‘)+ (Q-Q’ )*G]P-D(q) .V ,P  (2.2) 

and j = u ( q ) P - d ( q ) . V , P .  (2.3) 

The respective solute velocity vectors U ( q ) ,  u(q) and molecular diffusivity dyadics 
D(q), d(q) are henceforth assumed to be (known) functions of q alone; V(Q’) denotes 
the undisturbed fluid (i.e. solvent) velocity vector a t  Q’, whereas G is the (constant, 
position- and time-independent) undisturbed fluid velocity-gradient dyadic. In (2.2) 
the combination of terms, V( Q’) + (Q  - Q’) - G (with Q the three-dimensional 
position vector relative to an arbitrary, space-fixed origin) corresponds to an 
unbounded (Q  E Q,)  homogeneous shear flow. This dependence of the global 
convective velocity, U(q) + V(Q’) + ( Q -  Q’) .G,  upon the global coordinate Q marks 
the point of departure of the present problem from the classical case, since the latter 
is underlain by the assumption that all the phenomenological functions, including 
the velocity field, depend upon q done (Brenner 1980, 1982). 

The foregoing equations are supplemented by the following respective global- and 
local-space boundary conditions (cf. (1.4) for the el1ipsoid)t 

lQ- Q’l”(P, J ,  j )  + ( O , O ,  0 )  as lQ- Q’l + co for all m 2 0, (2.4) 

i i . j=O on aqo, (2.5) 

t Since the orientation space is closed upon itself, no counterpart of (2.5) appears explicitly in 
the ellipsoid problem outlined in (1  .l)-(1.7). Rather, the latter problem merely requires that the 
probability and flux density fields (P ,  J ,  j )  be single-valued and continuous in the orientational 
variables, 4( = 4). 
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together with the initial condition (cf. (1.5) for the ellipsoid problem) 

[d(Q-Q’)d(q-q’)  for t = 0 

=‘lo for t < 0. 

In (2 .5) ,  fi  is a unit normal to aqo, the boundary of thc local subspace. 
Thus, making use of the equivalence relations (1.  l o ) ,  the convectivediffusive 

problem for the transport of a Brownian ellipsoid, (1.1)-(  1.5) and the above problem 
are readily seen to possess the same structure, as has already been explicitly 
indicated in connection with (2.1)-(2.6). 

The preceding problem formulation is somewhat simplified upon applying the 
transformation Q + Q(l)  of the independent global variable, embodying the new 
choice Q(l) of global coordinate : 

def. 

P(Q,  q ,  t I Q’, 4’) = P(l)(Q(l) ,  q,  t 1 Q’, q’) e-(’:G)t, (2.7) 

(2.8) 
def. 

Q(l) = (Q - Q‘) - e-G1 - [ V( Q’) + - [ ePGt1 dt,, 
0 

with O a  constant vector, ultimately defined in (3.15). (Equation (2 .8)  is, in fact, the 
integral of the kinematic equation 

d 
dt 
- (Q-Q’ )  = ( Q - Q ’ ) - G +  0’’ 

governing the motion of a particle whose initial global-space position is 

Q-Q’ = Q(l) ,  say, a t  1 = 0, 

and which drifts with a constant ‘slip velocity’ U(’) relative to the carrier fluid, 
which itself undergoes a homogeneous shear characterized by the velocity gradient 
G .  Thus, (2 .7)  and (2 .8)  constitute a transformation to  a codeformational coordinate 
system (cf. Bird et al. 1987, as well as $5 of the present paper). When G = 0 ,  (2.8) 
degenerates to the form 

Q ( 1 )  = Q -  Q / -  0 1 ) t ,  

which represents a Galilean transformation to a frame of reference moving with the 
constant velocity P).)  

The resulting initial- and boundary-value problem posed for the conditional 
probability density P(l) obeys the following system of equations : 

( 2 . 9 ~ )  

and 
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where, in (2.9b), t denotes a transposition operator. Appearing in (2.9b) is the solute- 
velocity disparity, 

def. 

= U(q1-0, (2.10) 

where the constant vector U is explicitly 2hosen later to be equal to the long-time- 
average global ‘slip velocity’ of the tracer (cf. (3.15)). 

Since the problem satisfied by P(l) in the transformed domain includes no explicit 
or implicit dependence upon Q’, the functional dependence of P(l) is, in fact, such 
that 

P(1) p(1) (Q(’),q,tIq’), (2.11) 

rather than what appears on the right-hand side of (2.7). The transformation has 
thus removed the global-coordinate dependence of the global-space phenom- 
enological coefficients, albeit a t  the expense of now rendering the latter time- 
dependent. Apart from this new feature, the resulting problem is now identical with 
the comparable formulation of that for the ‘classical’ case (Frankel &, Brenner 1989), 
occurring for G = 0. I n  what follows the upper indices will be consistently omitted 
from both P(l) and Q(l) in the interest of notational simplicity. Where confusion with 
the original variables P and Q may result, we will render the distinction explicit. 

In  the following we seek an asymptotic, long-time description of the local-space- 
domain-averaged probability density , 

(2.12) 

as t + co . This description will be obtained from respective asymptotic expansions of 
the statistical moments of P,  without requiring explicit, a priori knowledge of P 
itself. 

3. Long-time asymptotic expansion of P 
We seek an asymptotic approximation of P ( Q ,  t 14’) in the long-time limit, 

IIdll t % 1, (3.1) 

wherein lldll denotes an appropriate norm of the dyadic d. The Fourier transform P 
of P is defined as 

P ( w , t I q / )  = /QmP(Q,tlq’)exp(iw-Q)dQ = C “ 1  T(iw)m(.)mMm(tIq’), (3.2) 

m-0 m .  

which possesses the indicated series expansion, with 

M m ( t I q ’ ) =  J J Q”p(Q,q,tIq’)dqdQ ( m = 0 , 1 , 2 , . . . )  (3.3) 
Qm g o  

the total polyadic statistical moments of P ;  the multiple dot-product operator ( - ) ”  
denotes m successive contractions. Alternatively, the total moments are expressible 
as 

M m ( t l q ’ )  =/qoPmdq ( m = O > 1 > 2 > . . . ) >  (3.4) 
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with 

the local polyadic moments. The initial- and boundary-value problems respectively 
satisfied by each of the P, may be derived via appropriate integrations over the 
global-space domain Q, in conjunction with use of the global-space boundary 
conditions (2.4). This yields the following sequence of equations : 

- a p m  + V ,  - j ,  = m[A U(q) . ePGt Prn-Js + m(m - 1) [ePGtt. D(q) * e-GtPm-2]S, 

pm(q, t I 4') = Jb Q"P( Q, 4, t I 4') dQ (m = 0,1 ,2 ,  . . .) (3.5) 
m 

( 3 . 6 ~ )  

(3.6b) 

i - j m  = 0 on aq0 ( 3 . 6 ~ )  

at 

j ,  = ~ ( 4 )  Pm - 4 q )  *VqPm, 

and (3.6d) 

where, in (3.6a), []Is denotes the symmetrization operator (cf. Frankel & Brenner 
1989). In fact, the foregoing recursive system is identical with that pertaining to the 
case G = 0 (Frankel & Brenner 1989) upon simply replacing AU and D there, 
respectively by AU-exp ( -  Gt) and exp ( -  Gtt) -D.exp ( -  Gt). 

An important advantage of the formulation in the transformed domain is that the 
zero-order scalar term Po, representing the solution of (3.6) form = 0, can serve as the 
appropriate Green's function (cf. Shapiro & Brenner 1987 for the comparable G = 
0 case), 

+m(m- l)~e-G"~~D(ql).e-Gt~PmP2(ql,t, )q')]')dqldt,, (3.7) 

for the higher-order polyadic terms. Thus, each P, (m = 1 , 2,3 ,  . . .) can, in principle, 
be determined recursively by quadrature of the above once Po is known. Following 
this, each total moment may then be obtained by straightforward integration of 

By virtue of the vanishing of the right-hand side of ( 3 . 6 ~ )  for m = 0, the system 
of equations governing Po shows no explicit dependence upon G ; as such, it possesses 
a structure identical to the corresponding zero-shear case, G = 0. We shall, therefore, 
make use of the decomposition (Brenner 1982) 

(3.8) 

for which P,"(q) represents the stationary, local-space distribution, achieved for t + 
00. This time-independent distribution satisfies the system of equations (Brenner 
1982) 

(3.4). 

po(q, 1 14') = p?(q)  +p(q,  t 14'13 

V4.j: = 0, (3.9a) 

fi-j? = 0 on aq0 (3 .94  

j," = uP,"-d-VqP;, (3.9b) 

and 

6 

Jqo P," dq = 1. (3.9d) 

FLM 230 
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JQ, Jq0PdqdQ = 1,  (3.10) 

whose validity can readily be verified for the field P which solves the system of 
equations (2.9).) The non-stationary contribution p ( q ,  t 14’) to  the density (3.8) 
vanishes exponentially rapidly for the sufficiently long times described by the 
inequality (3.1). 

Let vI (i = 1,2 ,3)  denote the eigenvalues of G. Subsequent analysis is confined to 
circumstances for which 

Re{vi} = 0 (i = 1 ,2 ,3 ) ,  (3.11) 

where Re{} denotes the real part of the argument in braces. The kinematical 
significance of this restriction is that it eliminates the possibility that the 
deterministic convection of the material tracer particle in the homogeneous shear 
field may lead to an exponentially rapid divergence of its global-space position 
vector. Since G is real, its three eigenvalues are either all real or else one is real, the 
other two being complex conjugates. If we further impose the condition (3.11), then 
exp (Gt) can only assume one of the following two forms (cf. Gantmacher 1960) : 

(a )  vl,* = fiw, vg = 0 :  

eGt = /+w-’sin w t G  + w - ~ (  1 - cos wt)  G .  G ; (3.12) 

or ( b )  vt = 0 (i = 1 ,2 ,3 ) :  
eGt = /+Gt+ iG*Gt2 .  (3.13) 

Substitution of (3.12) into (2.8), with the last term on the right-hand side deleted, 
shows that in the case of purely imaginary eigenvalues, the global-space position 
vector is time periodic and the concomitant streamlines closed. If, on the other hand, 
all the eigenvalues vanish as in (3.13), the position vector then grows algebraically 
with t ,  corresponding to either a constant acceleration or constant velocity (the latter 
if G - G  = 0, in which case the streamlines are straight lines). Only when (3.11) is not 
satisfied, i.e. there exists a value of vi such that Re {vi} + 0 can the position vector (as 
well as the velocity and acceleration of the material tracer) diverge exponentially 
rapidly. No restrictions are imposed upon the magnitude of the P6clet number, 

II G II 
Pe = jiq’ (3.14) 

wherein llGll represents an appropriate norm of the dyadic G. 

vector ff appearing in the definition (2.10) of AU(q): 
Finally, the resulting expressions are simplified by the following choice of the 

f 

(3.15) 

Thus, ff represents the long-time-average global ‘slip velocity ’ of the tracer. 
Substitution into (3.7) of (3.8) and (3.15) in conjunction with the condition (3.11), 

followed by a tedious asymptotic calculation, yields long- time expansions of the local 
moments P, as well as of the total moments M ,  (cf. the Appendix). 
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Anticipating that the leading-order asymptotic behaviour of P is Gaussian leads us 
to utilize the cumulant expansion 

(3.16) 

rather than the moment expansion (3.2). Upon making use of the expressions for the 
cumulants in terms of the total moments (Abramowitz & Stegun 1968) and the 
asymptotic expansions of the latter [(A 11) and (A 12)], one obtains? 

c, A(q')+exp, ( 3 . 1 7 ~ )  

(3.17 b )  
c, 3 w3(t) + u~,(q') - ~ , ( q ' )  + i ~ ~ ( q ' ) n s i  + ~ x P ,  ( 3 . 1 7 ~ )  

C, - 2[9(t) + A,(q') -tA2(q')] + exp, 

c4 - 4![94(t)+ I[A4(q')--A~(q')-A3(q')A(q')+A,(q')A2(q')--A4(q')lls1+exP, 
(3.17 d) 

where the q'-independent n-adics 9 , ( t )  are defined as 

9 , ( t )  = D,*( -)n(e-Gtl)n dt, (n = 2 , 3 , 4 , .  . .). (3.18) 

(We have suppressed the subscript in (3.17b) for the special case where n = 2 in order 
to achieve consistency with prior notation (Frankel & Brenner 1989).) The various 
m-adic coefficients DZ appearing above, as well as the q'-dependent n-adic fields 
A,(q'), are respectively defined in the Appendix. In (3.18) it was found useful to 
introduce the notation A,( - )"(€I), to denote the polyadic whose Cartesian tensor 
components are 

[An( * ) n ( B ) n l i j k . .  . = A p g r  . . . Bpi B g j  Br, . . . . (3.19) 

It is interesting to note that not only do the resulting expansions degenerate to 
ones already known (Frankel & Brenner 1989) from the zero-shear, G = 0 case, but 
that they can also be recovered easily from these classical zero-shear expressions by 
simply invoking the following 'equivalence ' relations : 

P,"(q)Bn(q)~P,"(q)B,(q)(.)n(e-Gt)n (n = 1,233, ..*), ( 3 . 2 0 ~ )  

(3.20 6 )  

D;t+B,(t)  (n = 2,3,  ...), ( 3 . 2 0 ~ )  

Substitute into (3.16) the asymptotic expressions (3.17) for the C, while applying 

( 3 . 2 1 ~ )  

def. 1 

D; + D;( )n(e-Gt)n, 

in which the B, are defined in the Appendix. 

the transformation 
B(0 ,  t 14') = &a, t Iq'),  

in which (3.21 b )  

and wherein 9; is defined in terms of 9 by the expression 

&. (&)t = 9. (3.22) 

(Since M, is positive definite by definition, so too must be 9, at least in the long-time 

C,  = n!B,(t)+A,(q')+exp, 

where the n-adic, &(q'), depends upon the local-space initial position q', but is time-independent. 

t The above expressions seem to suggest that, in general, 

6-2 
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limit; in turn, this assures that the dyadic 9: defined above is real.) This yields the 
following expansion of (3.16) : 

&a,t 14’) - exp{ia-&.A(q’)+ (ia-9-f)2(-)2A2(q’) 

+ ( i ~ B - 9 - 4 ) ~ ( .  )3[93+A3(q’)] + ( i 6 ~ 9 - f ) ~ (  .)4[94+A4(q’)] +. . .} exp (-@.a). (3.23) 

The original function P(Q,tIq’) is recovered from F(~,tlq’) via the inverse 
transform (cf. (3.2)), which for an n-dimensional global space is 

Into the above, introduce (3.21 b )  together with the additional definition 

to obtain 
Q = 9 - t . ~  (or Q = gt.Q), (3.24) 

clef. 

wherein e(Q, t I q’) is the inverse Fourier transform of &a, t I q’) and 191 = det $9. 
Use of the identity 

(3.26) 

together with (3.25) thereby demonstrates that  the leading-order asymptotic 
behaviour of P is 

(3.27) 

provided that all terms in the first exponent of (3.23) can be shown to be of o(1) as 
t +  00. This, in turn, enables the approximation of P(Q, t 14’) in the long-time limit 
by the solution P(Q,t) ,  say of the ‘purely global’, q’-independent, model problem, 
discussed in the next section. 

I n  the following we focus on plane (two-dimensional) shear flows: which facilitates 
calculation of the long-time expressions for Qn and 9-f. This permits us to explicitly 
address the ‘convergence ’ issues raised above. 

3.1. Plane (two-dimensional) shear flows 

For this class of flows we have that 

G = G G ,  G =  i o 0 .  (1 1 1) (3.28) 

All possible cases are spanned by the range of parametric values - 1 < a < 1 ;  
(a  = - 1  corresponds to ‘pure rotation’, a = 0 to ‘simple shear’, and a = 1 to 
elongational ‘hyperbolic’ flow (cf. Kao, Cox & Mason 1977)). The dyadic G given 
above possesses the eigenvalues 

V( = 0, f &G (i = 1,2,3), (3.29) 
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where the criterion (3.11) necessitates satisfaction of the inequality a < 0. Explicit 
calculation of the asymptotic long-time expressions for 9,, though fairly straight- 
forward, is quite tedious. The following exposition is therefore limited to outlining 
the essential results of the calculation, omitting details. 

For a < 0 i t  can be verified that 

9, = td,(7), (3.30) 

wherein the d,(7) (n = 2 , 3 , 4 , .  . .) are, respectively, n-adics whose scalar components 
consist of products of the scalar components of D,* with powers (up to and including 
the nth) of 7 = Gt. Making use of the explicit expressions for 6, (which are omitted 

( 3 . 3 1 ~ )  
here?) one obtains 

wherein all the scalar components of 6-1 are O( 1) for t + co. Furthermore, 

1 1  9 - k  = t-56-5, 

( ~ - t ) n ( . ) ~ d ~  - 0(1)  (n = 3,4,  ...), (3.31 b)  

whence (9+(. ),A,(qf) - O(t--nl2) (n = 1 , 2 , .  . .) (3.31 c) 

and ( ~ t ) " ( -  ),9, - 0(t-n/2+1) (n = 3 , 4 , .  . .I. (3.31d) 

Substitute the preceding into (3.23) to obtain - - exp ( - t ~ . t ~ )  exp {[itD-s-t.A(q') + ( i s  6-$3( - )3d31 t-a 

+ [ (itB. 6-i)2( - )2A2(q') + (itD - Sf)(( - )4d4] t-' + O(t-i)}. (3.32) 

Perform a power series expansion of the second exponential term on the right, and 
use (3.25) and (3.26) jointly with the identity 

( -  iw)nf"(o) exp (- io-  Q )  d o  = V;Sf(Q) & J,. 
together with the associativity of the product 

(ia-a-t)"(-)nA, = (ia)n(.)"[(6-t)n(. )"A,], 

valid for every n-adic A ,  (the latter being a direct result of the definition (3.19)). This 
leads to the asymptotic expansion 

P - (1 - t-i[A(q'). s-t. VQ + a,( * )3(6-93( * )3Vt 

+ t - " ~ , ( t f )  (. )2(6-$2(. )2v;+ 18, +d3 A(qf)y(. )4 (6-94( .  14v8 
(3.33) 

(Here, n denotes the same dimensionality as in (3.27).) Thereby, it is established for 
all planar shear flows corresponding to a < 0 that the leading asymptotic behaviour 
of P consists of a q'-independent Gaussian, the latter being characterized by the 
dyadic Q (or, equivalently, by 6). 

It is remarkable that the resulting expansion possesses a structure similar to that 
for the corresponding zero-shear case, G = 0 (Frankel & Brenner 1989). Indeed, one 
needs only replace the various D; appearing in the G = 0 case by 6, in order to 
recover (3.33). 

t Details may be obtained upon request directly from the authors or the Journal of Fluid 
Mechanics Editorial Office. 
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4. The 'purely global' model 
Generalized Taylor dispersion theory seeks to approximate P(Q, t i  4') in the long- 

time limit by a q-independent field, P ( Q , t ) ,  say, satisfying an appropriate 
convective-diffusive, initial- and boundary-value ' model ' problem that is formulated 
in the global subspace exclusively. 

In  the light of the preceding discussion pertaining to the relation between the 
present shear flow case and the classical G = 0 no-shear case, the proper formulation 
of the present model problem (whose validity will, in fact, be confirmed a posteriori) 
would appear to be as follows: 

(4.1 a )  

and ( 4 . l d )  

Relative to the classical zero-shear case, the only modification appearing in the above 
is that the phenomenological coefficient D' is here replaced by 

exp ( -  Gtt).D'-exp ( -  Gt) 

in the constitutive equation ( 4 . l b )  for the dispersive flux. 
It is readily shown that the ' model ' moments, defined as 

M;(t) = J Q"P(Q,t)  dQ (m = 0 , 1 , 2 , .  . .), 
Q, 

are given exactly (i.e. for all times t > 0) by the expressions 

( 4 . 2 ~ )  

(4.2 b ,  c )  

Here, similarly to 9 ( t ) ,  9. denotes the dyadic 

From the above it is straightforward to show that the model equation cumulants are 
given by the expressions 

(m = 1 , 3 , 4  ,... ), 

whence (4 .4)  

A central issue is how to select D' in (4 . lb )  such that P' displays the same 
asymptotic behaviour (3.27) as does P. An obvious choice is 

9. = 9. (4 .5)  

0' = D*. (4 .6)  

In  order that  the latter equation be valid for all t > 0 ,  one needs to select 
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As will become clear in the subsequent analysis, D* is not necessarily positive definite 
- a fact which may, in turn, lead to the dyadic 9' also failing to be positive definite 
(at short times). Bearing in mind that P', given by (4.4), is required to approximate 
only the leading long-time asymptotic behaviour (3.29) of P ,  it suffices to impose the 
requirements 

PI - 19.1 + O ( l ) l  ( 4 . 7 ~ )  

and &.g*-1. (&)t = /+ E, (4.7b) 

where all components of the dyadic E are of o(1). Equations (4.7) are less stringent 
than is (4.5) since they do not require strict equality of D' with D*. This, in turn, will 
subsequently enable the choice of a positive-definite D'. 

4.1. The B(q)-$eld and the coeficient D* 
The vector B(q)-field is given by the asymptotic relation (A4).  It is preferable, 
however, to express Bin an alternative form that does not require explicit knowledge 
of the transient portion p(q,tlq') of (3.8). Towards this end, substitute the 
asymptotic expression (A 2) into the problem defining PI, namely (3.6) with m = 1.  
Upon neglecting exponentially small terms and making use of the properties of P," 
(cf. (3.9)) we obtain 

V,. [UP," B-d-V,(P," B)] -P," B- G = P," AU ( 4 . 8 ~ )  

and ii.[uP," B-d-V,(P," B)] = 0 on dqo. (4.8b) 

These are supplemented by the normalization condition 

S,&P,"BdP = 0, ( 4 . 8 ~ )  

the latter resulting from (A 4) in conjunction with the normalization conditions 
( 3 . 9 4  and (3.10) respectively satisfied by P," and P. Equations (4.8) permit the B- 
field to be uniquely determined from knowledge of P,"(q) alone, rather than from 

Upon utilizing several vector identities in conjunction with the foregoing 

P,"[BA 0' dq = P,"(V, B)t. d 0 V, B dq - I[ 1,. P," BB dq . G]i' 

(A 4). 

equations, it can be shown that 

s,. I,. 
(cf. Brenner 1982 for the G = 0 case). Substitution of the latter into (A 5) yields 

where 

( 4 . 9 ~ )  

(4.9b) 

By virtue of the appearance of the last term on the right-hand side of (4.9a), D* 
might fail to be positive definite. It is important to note in this context that M, is 
positive definite by definition, which requires, in turn, only that 9 be positive 
definite in the long-time limit. (In shear flows, 9 replaces D*t; cf. (3 .20~) . )  We now 
proceed to show that this requirement is indeed satisfied. 
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Substitution of (4.9) into (3.18) form = 2, accompanied by integration by parts of 
the last term, leads to the expression 

9 = e-Gttl. P,"[D + (Vq B)t- d -  V q a "  dq - epGt1 dt, s, Lo 
+ 5 ePGtt * /qoP," BB dq . e-Gt - - iJqoP," BBdq. (4.10) 

The first term on the right-hand side is clearly positive definite. I n  all of the cases for 
which condition (3.11) is satisfied, the sum of the other two terms is either non- 
negative or else becomes negligible relative to the first term in the long-time limit. 

(i) vi = 0, f w .  In  this case, when use is made of (3.12), one obtains 

9 - [(I- o-2Gt. Gt) . D*. (/-w-zG. G) ++-2Gt. D*.  G 

+ ~ W - ~ G +  Gt * D* G * GI t + O( I). (4.1 1 )  

As the contributions made by the last two terms of (4.10) are both bounded, i.e. of 
0(1) for all t ,  9 is evidently positive definite as t + 00 owing to the dominance of the 
leading term in this limit. 

(ii) vi = 0. For this case, when (3.13) is substituted, it is found that the sum of the 
last two terms appearing on the right-hand side of (4.10), namely 

QGt . Gt.JqoP; BBdq - G Gt4 -1 2 [ G t - l q o  P," BBdq. G - GI t3 

P," BBdq. G . G + G+. P; BBdq. G )  t2 - [ Jqo P," BBdq. G]i' t ,  li' Jqo 
is clearly non-negative (for t+ 00).  

4.2. Selection of the coeficient D' 
Rewrite (4.10) in the form 

9 = g+$e-Gtt. P,"BBdq.e-Gt-- ;JqoP;BBdq, 
Jqo 

L g = e-G't,. D* . e-Gt, dt, (4.12) wherein 

depends only upon the positive-definite portion D* of D*. The foregoing discussion 
suggests that constitutes the asymptotically dominant portijon of 9 as t + CO, 

whence the pair of requirements (4.7) may be satisfied by selecting 

9. = $3. (4.13) 

A straightforward, albeit tedious calculation (whose details are omitted here) verifies 
this fact for the two-dimensional shear flows discussed in Q 3. One may thus select the 
phenomenological coefficient D' appearing in the model equation (4.1 b )  as 

D' = D*, (4.14) 

with ti* given by (4.9b). In contrast with the choice (4.6), the choice (4.14) not only 
assures the long-time matching of P with P', but also guarantees that the solution of 
the model problem (4.1) is well behaved at all times owing, inter a h ,  to the model 
phenomenological coefficient D' now being positive definite. 
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5. Lagrangian view in the original domain 

considering the total statistical moments in the original domain (cf. (3.4)-(3.5)), 
Further insight into the physical significance of the foregoing results is obtained by 

( & l a )  

as well as their asymptotic behaviour for t + 00. The latter is recovered from the 
corresponding behaviour of the moments MA) and FA) in the transformed domain by 
making use of (2.8) to express Q-Q’ in terms of Q(l). For future reference we list 
here the lowest-order pertinent identities thereby obtained : 

&(q, t I Q’, 4’) = P 8 q 1  t I q’), (5.2a) 

P,(q, t I Q’, 4’) = q l ) ( q ,  t I q’) - eGt + Pp)(q,  t I q’) [ V( Q’) + Q - r  eGtl dt,, (5.2 b )  

( 5 . 2 ~ )  

(5.2d) 

0 

Ml(t 1 Q’, 4’) = M1)(t 14’) .eGt + [ V(Q’) + .[ eGtl dt,, 

M, - Ml Ml = eGtt - ( Mi1) - M:)M:)) - eGt, 
0 

the latter being the second central m0ment.t 

5.1. The vector U 
Form the time derivative of ( 5 . 2 ~ )  to obtain 

wherein 

is the Oldroyd derivative (Bird et al. 1987) of MI in Q, space (cf. the remarks 
following (2.8)). Upon utilizing the asymptotic expression (A 12) for M:) in 
conjunction with the condition (3.11), one obtains 

equivalently, upon rearrangement, 

om-- dM1 [ v ( Q ) + M , - G ] .  
dt 

The first term appearing on the right-hand side of the latter equation is the 
absolute average velocity of the tracer in the global subspace; the sum in square 
brackets represents the fluid velocity at the average global position (Q-Q’ = M I ) .  

t Unlike the average global position vector given by (5.2c), the spread M,-MIM,  about this 
position is independent of Q since this spread is affected only by the gradient of the fluid velocity, 
but not by the absolute velocity vector itself. 
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Thus, U is the local-space-averaged ‘slip velocity’ of the tracer relative to  the fluid. 
In  the present problem this constitutes the only meaningful average velocity 
possessing (observer-independent) invariant physical significance. 

5.2.  The B(q)-field 

The quantity defined as 

(5.4) 

represents the conditional probability density of finding the tracer a t  the global- 
space position Q a t  time t given that its local-space position a t  the same time is q (cf. 
Reichl 1980). The moment 

thus represents the average global location of the particle given that. its local position 
is q. As t +  00, one thereby obtains (upon making use of the asymptotic expansions 
of P:) and M:), namely (A 2) and (A 12) for k = 0, respectively, in conjunction with 
( 5 . 2 ~ )  and (5.2b)) 

that is, the deviation of Plq from the ‘total’ global average position M, becomes 
independent of both q’ and t in the long-time limit. If instead of a single Brownian 
tracer we consider a ‘cloud ’ of solute particles and divide it into subpopulations of 
the particles according to their respective instantaneous local-space positions, (5.6) 
may then be interpreted as meaning that the global-space position vector of the 
centroid of such a subset of particles relative to the centroid of the whole cloud 
becomes stationary, in which state it is functionally dependent only upon q. 

qq--M, - B(q) +exp; (5.6) 

5.3. Comparison between D* and D* 
Upon forming the time derivative of the expression (5.2d) one obtains 

6 d 
6t dt 

e-Gtt . - ( M ,  - Ml Ml ) e- Gt = - (Mil) - M:)M:)), 

6 d 
6t dt 

in which - (M, -Ml  M,)  = - (M, - Ml M,)  - 2[(M, - M ,  M I )  - GIs (5.7) 

is the Oldroyd derivative (cf. Bird et al. 1987) of the dyadic M,-M,M, .  (The last 
term on the right-hand side of (5.7) represents the contribution to the time rate of 
change arising from passive convection of the tracer by the shear field ; the Oldroyd 
derivative eliminates this contribution from the total rate of change.) 

From (A l l ) ,  (A 12) and (3.11) it follows that as t --f co 

1 6  
2 6t 
-- ( M ,  - M, M,)  - D* + exp. (5 .8)  

Thus, 2D* is the asymptotic temporal rate of change of M 2 - M I M l  (in the 
‘Oldroyd’ sense). It is remarkable that while the asymptotic time-dependence of the 
central moment is nonlinear, the latter result shows that by employing a 
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codeformational frame of reference an Einstein-like relation is obtained between D* 
and the asymptotic rate of spread. This interpretation of (5.8) constitutes the 
generalization of the comparable asymptotic relation (Frankel 6 Brenner 1989) 

i d  
- - ( M , - M I M l )  - D*+exp, 
2 dt (5.9) 

which holds as t+co in the absence of shear. (Similarly, (5.3) is the present 
generalization of the long-time, zero-shear relation (Brenner 1980) (dMl/dt) - 
U* +exp.) 

Focusing again on the population of solute particles characterized by the local- 
space coordinate q,  we define the dyadic 

(5.10) 

which describes the spread about the mean global-space position of the q-specific 
population. Summation of these over qo (i.e. over all such populations, q E q o )  yields 

Use of (A 2) for k = 0, together with ( 5 . 2 ~ ~ )  and (5 .2b )  in the last term of the above, 
shows that for t + co, 

(M, - Ml Ml) - (M, - Ml M,),, - P,“ BBdq +exp. (5.11) 

Thus, the two different measures of the spread, represented by the left-hand terms 
of (5.11), differ in the long-time limit by the constant, q’-independent, positive- 
definite dyadic appearing on the right-hand side of (5.11). Alternatively, use of (5.6) 
in (5.11) shows that 

Jqo 

JqoP2 BBdq - 5,. p,“ Rq - M 1 ) 2  dq + exp, 

involving the spread between the centroids of the various q-specific populations 
about the centroid of the ‘cloud’ as a whole. 

Form the Oldroyd time derivative of (5.11) while making use of (4.9) and (5.8) to 
obtain 

1 6  
--(Mz-MIMl)zq 2 6t - D*+exp, 

which should be compared with (5.8). 
In the absence of shear (Prankel & Brenner 1989) the constant dyadic represented 

by the right-hand side of (5.11), by which the two measures of spread differ, does not 
affect the asymptotic time rates of change; hence, D* = D* for G = 0. 

The foregoing discussion indicates that while the dyadic M,-MIMl  is, by 
definition, a positive-definite quantity, it may not grow monotonically with time. A 
similar phenomenon occurs during oscillatory unidirectional flow (cf. Smith 1985, his 
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(5.1) et seq.], where the fact that D* is not positive definite indicates that the cloud 
of solute particles may, during certain time intervals, actually undergo longitudinal 
contraction rather than expansion (i.e. 'spread '). In the present context, contraction 
of the cloud in certain directions during particular time intervals may result from the 
coupling between the non-uniform, global-space fluid velocity exhibited by the shear 
field and the Taylor dispersion mechanism. Following Yasuda (1982), Smith (1985; 
cf. his (5.2) and (5.3)) also suggests that the difficulties attending a dispersion 
coefficient (corresponding to our D*) capable of adopting negative values may be 
overcome by use of an alternative dispersivity definition, yielding a positive-definite 
coefficient comparable with our D*. 

In conclusion we now give a heuristic description of the physical mechanisms of 
spread respectively embodied in D* and D*. This provides a qualitative explanation 
as to why the latter is necessarily positive definite whereas the former may not be. 

The spread of an aggregate of particles about its mean global position is 

Mz-MlM, = CQiQi7 
i 

where Qi is measured from the centre of mass of the aggregate to the ith particle, the 
summation extending over all particles comprising the cloud. We omit the 
contribution to this spread arising from the global-space molecular diffusivity D(q) 
and make use of the shear fluid velocity (cf. (2.2)) to express dQJdt. In addition we 
use (5.6), (5.7) and (A 5) to obtain 

with U, the 'slip velocity' U(q) of the ith particle. Evidently, this rate of change 
depends upon the instantaneous configuration of the cloud within the global 
subspace, which configuration is determined inter alia by the convection arising from 
the non-uniform velocity field generated by the shear. Thus, application of 6/6t does 
not completely eliminate deterministic contributions from the above rate of spread. 

JqoP:(Vq B)t. d. V, B dq 

via an examination of the rate of change of Pz, - PI, Pl,. Since all of the particles 
belonging to a specified subset q possess the same slip velocity U(q),  no change 
comparable to that exhibited by the previous case occurs here. Omitting again the 
contribution of the global-space molecular diffusivity D, the only source of variation 
in the spread stems from the fact that the population characterized by q does not 
consist a t  all times of the same individual particles. Owing to the action of the local- 
space molecular diffusion process (quantified by d),  particles continuously change 
their respective local-space positions. In the long-time limit there exists a local-space 
equilibrium distribution, with the particles excluded from the subset q,  being 
replaced by an equal number of particles from other subsets. The latter particles 
occupy different global-space positions than those excluded. Owing to the purely 
stochastic nature of the present process, this phenomenon may be expected to result 
in a monotonic growth of the total spread, (M2-MlMl)zq .  

An essential element underlying the latter mechanism is the existence of a non-zero 
local-space molecular diffusivity, d =k 0. If, on the other hand, d = 0, the replacement 

A comparable interpretation is now suggested for 



Generalized Taylor dispersion phenomena 167 

process described above becomes simply the exchange of whole populations belonging 
to the various subsets q.  This, in turn, results in the exchange of corresponding values 
of P2,- P1,Plq, without any net change in (M2-Ml  Ml)zq. 

6. The case of zero solute velocity disparity 
As a limiting case, we consider in this section the particular situation for which 

AU(q) = o ,  (6.1) 

such as occurs for rigid, neutrally buoyant, centrally symmetric particles, where the 
slip velocity vanishes (U = 0), or for rigid spherical particles under a constant 
external force, where the slip velocity is constant (U= @. Here, no Taylor 
dispersion mechanism exists, whence the spread of the tracer within the global 
subspace results only from microscale diffusion and the interaction of the latter with 
the shear velocity field. Upon substituting (6.1) into (3.7) we find that the odd 
moments vanish, i.e. P2k+l = 0 for all times. Furthermore, from their respective 
definitions, it readily follows that P," B2k+1(q), A2k+1(q') and D&+l also vanish 
identically. The requisite asymptotic expressions are obtainable from the foregoing 
results by simply deleting those terms which include these three quantities. In  
particular, we now have that 

- D* = D* = D* = 

From (3.33) the asymptotic expansion obtained for P is 

The expansion of P now consists only of descending integral powers oft  because the 
fractional powers appearing in the original expansion (3.33) were all associated 
exclusively with the odd moments. In particular, the correction to the leading-order 
Gaussian behaviour is now of O(t-l) rather than O(t-i) .  

6.1. The case D = constant 

If, in addition to the vanishing of AU, D is independent of q (such as occurs for rigid 
spherical particles), one can directly integrate ( 2 . 9 ~ )  over qo while making use of the 
boundary condition (2 .9e) ,  to obtain a system of equations which are identical to the 
model equations ( 4 . 1 ~ )  and (4.lb) when the selection D' = D is made. Furthermore, 
the solution of P is given by (4.4), which is now exactly valid for all t > 0, rather than 
only in the long-time limit. It is also important to note that the latter result is valid 
for all G, since no restrictions upon the eigenvalues vt were imposed in its derivation. 
Similarly, the Einstein-like asymptotic result (5.8) is now superseded by the exact 
relation 

1 6  
- - ( M z - M I M l )  = D .  
2 6t (6.3) 

Upon making use of the transformation (2 .8) ,  P can be explicitly expressed in the 
original domain to furnish an invariant (and generalized) form of the solutions of 
Foister & van de Ven (1980) for the stochastic motion of a spherical Brownian 
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particle or point-size tracer in a steady shear field. Substitution of their expressions 
for the central moment (which are nonlinear in t )  readily verifies (6.3), which is 
another manifestation of the codeformational view. 

It should be emphasized that it is only for spheres that the translational molecular 
diffusivity D is independent of the orientation q (say, the three Eulerian angles) of 
the body. The foregoing discussion demonstrates that non-spherical bodies diffusing 
in shear fields (Brenner & Condiff 1974) display a much more complex behaviour 
than do spheres, even in the zero-slip-velocity case (6.1). 

7. An illustration: dispersion of a size-fluctuating porous sphere 
As a simple illustration of the preceding general theory, we address the dispersion 

accompanying the sedimentation in a homogeneous shear field of a porous Brownian 
sphere undergoing thermal fluctuations in its radius (as well as in its position in 
physical space). Such a body serves as a simple model for a polymer macromolecule 
(Brinkman 1947 ; Debye & Bueche 1948; Wiegel 1980). ‘Motion’ of this sphere occurs 
in a four-dimensional phase space consisting of the position vector R = (x, y, 2) of the 
sphere centre in physical space together with its instantaneous radius To,  which varies 
with time owing to its Brownian fluctuations in the size-space r,, < r,  < ro2. 

An exact microscale description of this motion is provided by the conditional 
probability density 

(7.1) 

Thus, 4nPd3Rr: dr, is the conditional probability of finding the sphere centre at time 
t > 0 within a small volume element d3R centred about the point R while 
simultaneously the sphere possesses a radius lying within the range between ro and 
ro+dr,, given that at t = 0 the sphere was introduced a t  the point R’ and possessed 
a radius rh. P satisfies the continuity equation 

P = P ( R ,  r,, t I R‘, rh). 

ap l a  
- + V - J + - - ( r : j )  = 0, 
at r: ar, 

together with the following convective-diffusive constitutive equations for the 
respective flux densities : 

(7.3) J = [M(r,)  F+ V(R’) + (R - R’) - GI P-D(r , )  V P  

in physical space, with V = (a/dx, a/ay, a/&) the usual gradient operator, and 

(7.4) 

the size-space flux density. 
In the foregoing, M(r, )  is the (scalar) translational mobility, which for a uniform 

porous sphere of radius ro moving through a fluid of viscosity p was first given by 
Debye & Bueche (1948) as 

1 1 +a&( 1 -Ki tanh K-i) 
M(r , )  = - , (7.5) 6npr, 1 -Ki tanh K-i 

where K = k / r :  is the dimensionless permeability of thc porous material, with L the 
(dimensional) Darcy permeability coefficient. For the case of small solids con- 
centration (appropriate to a polymer molecule), the dimensional permeability is 
(approximately) inversely proportional to q5, the volume fraction of solids within the 
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porous sphere (Felderhof & Deutch 1975). In this case, K scales with r,, being thus 
conveniently written as 

K = K ? ,  (7.6) 
T O  

where K = const. is the dimensionless permability, K ,  a t  a reference radius ro = To; 
m(r,) is the size-space mobility, whose inverse is the (hydrodynamic) resistance of the 
sphere to changes in its size. Frankel, Mancini & Brenner (1991) obtained the 
expression 

In the dilute case, where K is given by (7.6), one obtains 

( 7 . 7 ~ )  

(7.7b) 

where q5 = 6 is the solids volume fraction for r ,  = To. The physical- and size-space 
diffusivities may be obtained from the respective pair of Stokes-Einstein relations 

D(r,) = kTM(r,), d(r , )  = kTm(r,). (7.8a, b)  

F is the (constant) external force (e.g. gravitational or electrophoretic). The size- 
space force is assumed to be derivable from a non-dimensional potential E(r,)  : 

d f = -kT-E(r , ) .  
dr0 

(7.9) 

The above are supplemented by respective physical- and size-space boundary 

IR-R’lm(P,J,j)+(O,O,O) for IR-R’I+oo ( m = 0 , 1 , 2  ,...) (7.10) 

and j = 0 for ro = r,,, r,,, (7.11) 

as well as by the initial condition 

conditions, namely 

Equation (7.1 1) signifies that the sphere is confined 

for t = 0 

for t < 0. 
(7.12) 

to size fluctuations within the 
interval ( T o , ,  T o , ) .  

Equations (7.2)-(7.12) serve to uniquely determine P 2 0,  and a more detailed 
account of the foregoing formulation is to be found in Frankel et al. (1991). It is 
readily verified that this P satisfies the normalization condition 

4x IRm l:: P(R,  rot t I R‘, r i )  r: dr,  d3R = 1 (7.13) 

for all times t 2 0. In most cases one is interested not in the exact microscale density 
P, but rather in the coarser-scale description of the motion in physical space 
embodied in the macroscale density 

P(R,  t I R’, r i )  = 4x r: P ( R ,  T o ,  t I R’, r i )  dr,, (7.14) 
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representing the average of P over size space (which is not to  be confounded with the 
ubiquitous pre-average (Brinkman 1947; Debye & Bueche 1948; Wiegel 1980; cf. 
also Nadim & Brenner 1989), where the fluctuating porous sphere is replaced by a 
rigid one of constant radius F,). 

When one recognizes the ' equivalence relations ' 

(7.15) 1 Q + R ,  q+grroT 

j +  ~?~, j ,  

4) +M(r,) F, D(q) +D(ro)  1, etc., 

u --f ir u(ro) ,  d + gr C?r d ( ro ) ,  

(with gr a unit radial vector normal to the porous sphere surface), it is readily seen 
that the present physically posed problem, namely (7.2)-(7.4) and (7.10)-(7.12), 
possesses the same mathematical structure as the generic problem, (2.1)-(2.6). Here 
too we apply the transformation (2.7) and (2.8). In  what follows, use will be made of 
the non-dimensional variables and parameters r ,  i@ and rii, defined respectively as 

(7.16a, b, c) 

The problem posed for P;(r,), the long-time limit of the conditional probability 
density for finding the sphere to  be of radius r, (irrespective of its physical-space 
location), consists of (cf. (3.9) and (7.15)) the differential equation 

the no-flux boundary conditionst 

and the normalization condition 

(7.17a) 

(7.17 b )  

(7.17 c) 

While the generic problem (3.9) posed for P," may be implicitly dependent upon G 
(through u(q),  cf. (1.3)), (7.4) and (7.9) show in the present case that P," is wholly 
unaffected by the existence of shear (cf. Frankel et al. 1991). One thus readily obtains 

wherein 

and r .  = - (i = 1,2). ( 7 . 1 8 ~ )  
T O  

t In fact, it suffices to satisfy (7.17 b )  at either r,, or ro2, which automatically assures that the size- 
space flux j: = 0 for all ro in the range r,, < r, < rot. 



Generalized Taylor dispersion phenomena 171 

From the latter result in conjunction with (3.15) and (7.15) one readily obtains 

(7.19a, b) 

with E =  F/F (F = 14) a unit vector parallel to F. Owing to the spherical shape of 
the particle, it is not surprising that the average 'slip velocity' is parallel to the 
external force. Use the above in conjunction with the equivalence relations (7.15), 
and define the non-dimensional vector field b(r) via the expression 

1' 

P,"B = -b(r),  
kTvo 

(7.20) 

to obtain from (4.8) the following boundary-value problem for the b-field : 

(7.21 b) 
d 
dr 

f i ( r )  e-E(r) - [b eE(')] = 0 at T = r l ,  r2 

(it can readily be verified that one of these two conditions is redundant), and 

l :r2bdr = 0. ( 7 . 2 1 ~ )  

We represent the solution of the above by making the Ansatz 

b(r) = b,(r) P+ b2(r) G + b,(r) 13- G- G, (7.22) 

while employing the Cayley-Hamilton formula, which for planar shear flows (cf. 
(3.28)) as well as for shear fields satisfying (3.11) adopts the form 

6.6.6 = 018. (7.23) 

Thereby, we obtain the following differential equations for the scalar b,(r)-fields (i = 
1 ,2 ,3 )  : 

1 2%. -LA{ y2fi e-E- d (b, eE)} = a[l@-m eCE, 
r2 dr dr 

I d  { r2fi e-E- d ( b 2 e B ) } + ~ b 3 0 1  PGe = pGe - b,, 
r2 dr dr kT 

r2&ePE-(b3eE)}+lLOiRb, d = 0, 
r2 dr dr kT 

(7.24 a) 

(7.24 b) 

(7.24 c) 

together with the boundary conditions 

(7.25) 
d 
dr 

f i ( r )  ePE(') -[b, eE(r)] = 0 for r = r1(r2) 

and normalization 

for each i = 1, 2, 3 in (7.25) and (7.26). 

1; r2b, dr = 0 (7.26) 
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The problem posed for b, may be uncoupled from the b, and b,, problems, and is 
readily solved to obtain 

wherein 

( 7 . 2 7 ~ )  

(7.276) 

- 
b, = -- r2epE'(')P1(r)dr. ( 7 . 2 7 ~ )  and 

Thereby, b, is independent of G. The solution of the system of equations (7.24)-(7.26) 
becomes particularly simple in the case of 'simple shear' (G. G = 0, a = 0), in which 
case (7.246) and ( 7 . 2 4 ~ )  become uncoupled; b, is then readily obtained (similarly to  
b , ) ,  whereas b, can be ignored since the last term on the right-hand side of (7.22) 
vanishes. 

x: 

We next calculate the dispersivity dyadic 

where the non-dimensional D* is decomposed into the sum 

D* = B"+D". 

(7.28) 

(7.29) 

0" denotes the contribution which exists even in the absence ofa  'Taylor' dispersion 
mechanism (that is, when either fluctuations in size or external forces are absent). It 
is equal to the long-time average of the physical-space diffusivity and, as such, is 
termed the 'molecular ' dispersivity. It may be calculated from the first term on the 
right-hand side of (A5)  (appearing in the Appendix) in conjunction with (7.8a),  
(7.15), (7.16b) and (7.19b) to give 

D M  =&. (7.30) 

This 'molecular' contribution is unaffected by the shear, since P," is shear-rate 
independent. 

From the second term on the right-hand side of (A 5) jointly with (7.15), (7.20), 
( 7 . 1 9 ~ )  and (7.21), one obtains the convective contribution 

D - - { y lF~+y21[FF.G' ] IS+y , [F~ .G.G]IS} ,  (7.31 a )  
"c - (3 

where yz: = 47t J;: r2bi(r) [i@(r) -GI dr  (i = 1 ,2 ,3 ) .  (7.31 b) 

Upon making use of the expression (7.27) for b, in conjunction with the definition M 
it can be shown that 

(7.32) 

The first term on the right-hand side of (7.31 a),  which is shear-independent, is thus 
clearly non-negative. Owing to the appearance of the remaining two terms, this 
property is not necessarily true of D" itself. To confirm this conclusion, express 13 in 
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terms of its Cartesian components (Pl,P2,#3), say, in our frame of reference, and use 
the expression (3.28) for G in plane two-dimensional homogeneous shear. The 
characteristic equation for the A, ( i  = 1 ,2 ,3 ) ,  namely the three eigenvalues of a", is 
then 

ID" -Ad = - A(A2- [ ( y l  +ay , )  (P;  + P i )  + ylP; + (1 +a) y2P1P2] A 

-[y;(aP;-P;)2+a2(y2F1+ y3P2)2@+ (ay,P + y2P2)";]> = 0. (7.33) 

Unless both Pl, p2 = 0, one of the eigenvalues necessarily satisfies the inequality A, < 
0. Thus, whenever E-G + 0,  i.e. the external force is non-orthogonal to the fluid 
velocity gradient, D" will fail to be non-negative. 

Finally, we consider the dyadic 9, which dominates the asymptotic behaviour of 
P as in (3.27). 

Substitution of (3.12), (3.29) and (7.28)-(7.31) into (3.18) yields 

(i) The strongly rotational (a < 0) case 

O( Fl), 

(7.34) 
where the dimensionless time t" is defined by the expression 

(7.35) 
-a 

t = -  ' O p t "  ( or, equivalently, by 7 = Gt = kT 
Observe that the coefficient y2 of [p@. GIs in the expression (7.31 a )  for D" does not 
appear a t  the leading order of $9; as such, it will not influence the behaviour of P .  
This seems plausible inasmuch as 9 should prove invariant to reversal of the flow 
direction (i.e. reversal of the sign of G). The coefficient y 3  appears only in the 
combination y1  + ay3, which can be shown to satisfy the inequality 

1 2  
Y1+aY3 r 2 h ( r )  e-E(7) [ (2- a$y - 2a dr 2 0, (7.36) 

thus assuring the positive definiteness of $3 as t + co. 

(ii) Simple shear (a = 0 )  
Substitution of (3.13) and (7.28)-(7.31) into (3.18) yields 

(7.37) 
(assuming that 7 9 1 ) .  
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Use of either of the above expressions for 9, together with the transformation (2.7) 
and (2.8) in conjunction with (3.27), yields the leading-order asymptotic expression 
for P in the original domain. Substitute 4 = 0 (i = 1 ,2 ,3 )  and denote 

kT = D = --M. 
F O  

(7.38) 

Integration of P over z in the interval ( - co, co ) then leads to expressions which agree 
with the leading-order behaviour of Foister & van de Ven’s results (1980; cf. their 
equations (2.15)-(2.20)). It is evident that only in the complete absence of any Taylor 
effect can the fluctuating sphere be represented adequately, insofar as its mean 
convective and diffusive transport through the fluid is concerned, by some ‘average’ 
rigid sphere (e.g. of diffusivity given by (7.38)). 

A related issue is whether or not the leading behaviour of P can be obtained by 
substituting the expression for D* appropriate to a fluctuating sphere moving in a 
quiescent fluid into the known expressions (Foister & van de Ven 1980) for the 
dispersion of a rigid sphere in a shear field. Such a superposition neglects the effect 
of the shear field upon D* and B. I n  general, this coupling effect arises from the 
appearance of the shear term P F B - G  in the equation ( 4 . 8 ~ )  for the vector B-field. 
(This coupling is then reflected both explicitly and implicitly (through yz  andy,) in 
the second and third terms on the right-hand side of ( 7 . 3 1 ~ )  expressing Dc, in 
particular by the latter not necessarily being non-negative (cf. (7.33) et seq.) .)  The 
leading behaviour of P is determined by the properties of 9. As noted above, in the 
strongly rotational (a < 0) case, 9 (cf. (7.34)) depends upon y3, which is a shear- 
dependent coefficient of Dc. Obviously, the above-mentioned superposition fails 
under these circumstances. On the other hand, in the simple shear (a = 0) case, the 
leading expression (7.37) for 9 depends only upon the shear-independent coefficient 
y1 (cf. (7.27) et seq. and (7.31 b ) ) .  It is only in this latter case that the coupling between 
the shear flow and the size fluctuations does not affect the leading asymptotic 
behaviour of P ;  hence, only in this case will superposition be valid. 

Those readers interested in explicit physical examples, wherein the parameter 
magnitudes, If, 6, p, etc., are related to specific kinetic macromolecular data (e.g. 
molecular weight, effective bond length, etc.) are referred to a forthcoming paper by 
Frankel et ul. (1991). 

8. Concluding remarks 
The present contribution extends the scope of generalized Taylor dispersion theory 

to problems of solute flow and dispersion in unbounded homogeneous shear flows for 
circumstances in which the Brownian solute particles possess internal (e.g. 
orientational, conformational, etc. ) degrees of freedom. Generalized Taylor dispersion 
analyses of such transport processes have heretofore proven intractable using 
conventional paradigms (Brenner 1980, 1982) owing to the functional dependence of 
the global velocity field upon the global coordinate. 

Employing an appropriate transformation of the global-space coordinates restores 
the classical structure of the initial- and boundary-value problem governing the 
conditional probability density function. Following that, subsequent analysis 
demonstrates that the pertinent asymptotic expansions of the sbatistical moments 
are then recoverable from familiar classical expressions (Frankel & Brenner 1989) via 
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replacement of the global phenomenological coefficients, namely AU and D ,  by 
AU. exp ( - Gt) and exp ( -  Gtt) - 0 - e x p  (Gt), respectively. The asymptotic expansion 
for the local-space-averaged density P thereby obtained consists of a dominant 
Gaussian behaviour (which is independent of the local initial conformation 4’) plus 
higher-order correction terms proceeding in inverse powers of ti. This result 
establishes the existence of a ‘ purely global ’ (i.e. macroscale) description appearing 
in the form of a convective4iffusive model of the mean solute transport process. 

A central issue in the construction of the model problem is that of selecting the 
appropriate dyadic dispersivity coefficient 0’ appearing in the macroscale consti- 
tutive equation for the solute’s dispersion flux vector. The traditional definition of 
D’, which is based upon the long-time limit of the rate of change of the central 
moment M , - M I M l ,  fails because the asymptotic behaviour of the latter is, in 
general, nonlinear in t - as was first pointed out by Foister & van de Ven (1980) for 
rigid, neutrally buoyant, spherical particles. It is a remarkable feature of the 
codeformational view which, despite this nonlinear time dependence, restores an 
Einstein-like relation (cf. (5.8)) between the (stationary and invariant) coefficient D* 
and the long-time limit of the Oldroyd rate of change of M,-M,M,.  This latter 
limit, however, does not necessarily yield a positive-definite dispersivity. This occurs 
because, even in a codeformational frame, the central moment may not grow 
monotonically with time. Reconsideration of the several transport mechanisms 
involved in the dispersion process, i.e. passive convection by the shear flow, 
molecular diffusion, and the Taylor mechanism (as well as their mutual interactions) 
leads to a Lagrangian interpretation of the vector B-field, as well as to a generalized 
dispersivity dyadic definition (comparable to that proposed by Smith 1985) which is 
positive definite - thus ensuring that solutions of the resulting model problem are 
well behaved. 

The general theory is illustrated by the dispersion in unbounded homogeneous 
shear flow of a macromolecular coil, which is modelled as a size-fluctuating Brownian 
porous sphere. The results demonstrate the inadequacy of representing the 
macromolecule by some equivalent ‘ pre-averaged ’ rigid sphere. 

As made clear in the Introduction, the general theory presented here provides a 
framework which enables a rigorous analysis of the dispersion of orientable particles 
(e.g. ellipsoids) in homogeneous, unbounded shear flows. The results of this study 
which explicitly illustrate the effect of shear rate on the macroscale dispersion of 
Brownian ellipsoidal particles in physical space are reported separately, in a 
forthcoming publication (Frankel & Brenner 1991). 

Since the present theory is not confined to any specific range of PBclet numbers, 
the main limitation of its applicability originates from the assumption (3.11) 
regarding the eigenvalues of G. This restriction rules out the possibility of an 
exponentially rapid divergence arising from passive convection in the shear field, 
thereby rendering it a ‘slow’ process relative to the diffusive sampling of the local 
(e.g. orientational, conformational, etc.) space. Any attempts at the eventual 
removal of this restriction involve questions of considerable interest regarding the 
formal, asymptotic existence of a ‘purely global ’ macroscale convectivdispersive 
description of the solute transport process, and thus constitutes a natural possible 
extension of the present research. 

I. F. is grateful to the Technion V.P.R. Fund-Sophia L. Shamban Research Fund. 
H.B. was supported by the National Science Foundation and the Office of Basic 
Energy Sciences of the Department of Energy. 
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Appendix. Long-time asymptotic expansions 
A tedious calculatioil deriving from (3.7) and (3.8) in conjunction with the 

condition (3.11) leads to the following pair of asymptotic expansions for the local 
moments P,. 

Even orders (m = 2 k ;  k = 0 , 1 , 2 , .  . .): 

x { [B(q)*ePGt + A(q')] D:( -)3(e-Gt2)2 dt, 
0 

Whenever negative powers or factorials of negative numbers occur in the above, the 
corresponding terms should be replaced by exponentially small remainders. 

The above expressions furnish the first two leading-order terms in the expansion 
of Pzk, but only the dominant behaviour of P2k+l. These expressions can be verified 
in a straightforward manner by invoking inductive arguments, while making use of 
(3.7) together with the following definitions : 

- P:(q)B(q).e-Gt+exp as t +  00 (A 4) 
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(which asymptotic relation serving to define the B-field is established a t  the 
conclusion of this Appendix), 

J o  J q o  

* P,"(q)e-Gtt.B2(q).e-Gt+exp as t+ 00 (A 6) 
(cf. (A 16) et seq.), 

A2(q') = l iml f 1 e-Gttl.D(q,).e-Gtlp(ql,tllq')dq,dt 

x AU(q,).e-Gtzdq,dt2dt, fexp as t+  co (A 9 )  
(cf. (A 16) et seq.), and * ] I '  

0: = J q o m q l ) u ~ ( q l )  ~ , ( q , )  + w q , )  ~~(q i )nsdq i .  (A 10) 

The total moments are now obtained via quadratures of (3.4) in conjunction with the 
normalization relations (3 .9d)  and (3.10), thereby obtaining 
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k-3 1 
D:( -)4(e-Gt2)4 dt,)] + 2 ( k - 3 ) .  , I[[ r D*( . )2(e-Gt1)2 dt,] 

x [ D,*( - )3(e-Gt2)3 d t 2 J r +  . . .} 
0 

and 

A . l .  Existence of the B,(q)-fields 

First-order field ( i  = 1) 
Define 

and change the temporal integration variable such that t, = t-t,. Time differenti- 
ation then yields 

d 9  
- + 9 . G  = P,"(q,)p(q,tIq,)AU(q,)dq, - exp as t+co (A 14) 
dt Jb. 

since p - exp as t +  m. 
We seek an asymptotic solution of this latter equation for t +  m. In general, 

9 = p,m(q)B(q).e-Gt+B(q,t), (A 15) 
where B denotes a particular solution of the inhomogeneous equation (A 14). Thus, 
B is of the form 

B - Bo)(q) + exp, 

in which the time-independent vector Bo) satisfies the orthogonality condition 

B(0). G = 0.  

(The vector field Bo)(q) may be non-zero provided that G is singular.) The latter 
orthogonality condition allows us to write 

B(O)(q) = BO). e-Gt, 

whence this term may be absorbed into the first term on the right-hand side of (A 15). 
Thereby, we have thus established the asymptotic relation (A 4). 

Higher-order fields (i = 2 , 3 , 4 ,  . . .) 

asymptotic identity 
The above result can be extended to general-order fields. In particular, the 

B,(n3t)d:.rS P,"(q,)p(q,t-tt,Iq,)f,(q,)(. )"(e-Gtl)"dqldtl 
0 40 - P,"(q) F,(q) (. +exp as t + 00 (A 16) 
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suffices to establish the existence of B,(q), as in (A 6). At higher orders the definition 
of B,(q) involves additional terms, the asymptotic estimate of which is exemplified 
in the following by the case i = 3 .  

Upon defining 

%(q,4tl)  = ~ ' ~ q o ~ P ( ~ l ) ~ ( q ~ ~ - - t 2 1 q l ) d . ~ ~ q l ) ~ ~ ~ G ' ~ d q l d ~ , ,  (A 17) 

we wish to demonstrate that 

wherein 

and B')- exp as t + m .  

To effect this demonstration, introduce the alternative integration variable t ,  = t - t ,  
into (A 17) so as to obtain the relation 

f = JqoPaql) p ( q , t ,  141) W q , )  -e-G(t-t3) dq, dt, = f ' " ( 4 ,  t 9  t - - t , ) ,  

say. Time differentiation of the latter yields 

f',"(ql)P(q~~lql)~~(ql)dql - exp(q,t) as t+a. (A 19) 
= Jqo 

The general solution of the associated homogeneous equation is 

JFL~) = f ( 2 ) ( q ,  t - t , )  e-Gt = PF(q) Bl)(q, t - t , )  - e-Gtl, 

whereas a particular solution of (A 19) is 

/p' - exp (4 ,  t ) .  

(The latter cannot depend upon t - t ,  inasmuch as the forcing term does not.) 
Return to the original notation (cf. (A 17)) so as to obtain 

[ ~ q o ~ , " ~ ~ , ~ P ~ ~ ~ t - ~ 2 1 ~ l ~ A u ~ ~ , ~ . e - ~ ~ ~ d ~ l d t 2  

- P ~ ( q ) B ' ) ( q , t - t , ) . e - G t l + e x p ( q , t ) .  

For t ,  = t the left-hand side of the above is equal to P,"(q)B(q)-exp(-Gt) (cf. 
(A 14)). As t +  00 while keeping t ,  fixed, both the left-hand side and the second term 
on the right-hand side become exponentially small, whence (A 18) is established. 

All of the foregoing results are independent of the assumption (3.11). As such, they 
retain their validity even when there exist eigenvalues such that Re {vi} =l= 0. 
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